УДК: 552.513: 622.831.322

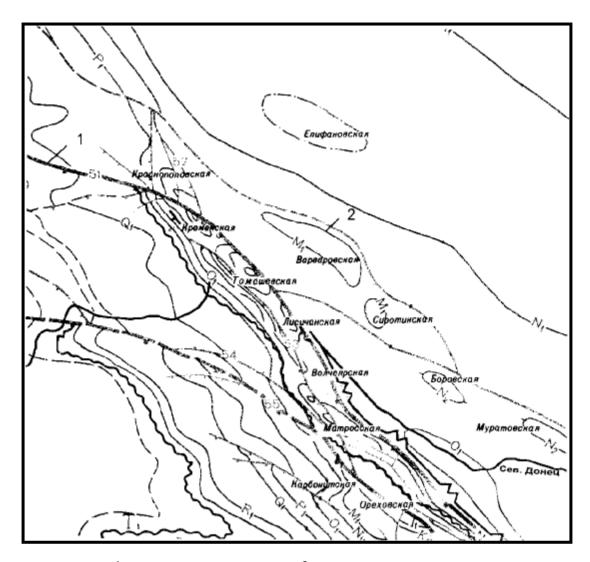
В.В. Лукинов, В.А. Баранов, Л.И. Пимоненко (ИГТМ НАН Украины), Г.З. Задара (ГРГП «Востокгеология»)

ГЕОЛОГИЧЕСКИЕ ОСОБЕННОСТИ УЧАСТКА ТОМАШЕВСКОГО, КАК ПРИМЕРА ТЕХНОГЕННОГО МЕСТОРОЖДЕНИЯ МЕТАНА

Наведені результати дослідження зміни газоємних властивостей порід після видобування там вугільного пласта. Відзначено зменшення вологи та збільшення тріщинуватості порід.

GEOLOGICAL FEATURES OF AREA TOMASHEVSKOGO, AS EXAMPLE OF TECHNOGENETIC DEPOSIT OF METHANE

The results of research of change of gas-bearing properties of breeds are resulted after a booty there coal layer. Diminishment of moisture and increase of jointing breeds is marked.


В настоящее время на Украине остро чувствуется дефицит энергоносителей: потребляя 90 млрд. м³ природного газа в год - добывается лишь 17,5 млрд. м³; добыча нефти составляет 5 млн. т. в год, а потребляется - 20 млн. т. В то же время угольный метан по своей калорийности такой же, как и природный газ и в большинстве развитых стран его добыча поставлена на промышленную основу. Проблема промышленной добычи метана успешно решается в ряде стран Западной Европы и Америки. Например, в США в 1998 г. добыча угольного метана составила 29 млрд. м³.

В Донбассе особый интерес вызывают техногенные ловушки - скопления углеводородных газов на полях закрытых шахт, в которых может накапливаться метан, десорбирующийся из угольных пластов и прослоев. Для создания таких ловушек необходимы определенные тектонические и литологофациальные условия.

Целью данной статьи является рассмотрение основных геологических характеристик пород, подработанных горными работами и анализ возможности сохранения метана в антиклинальных и купольных структурах закрытых шахт и отработанных горизонтов.

Одним из наиболее перспективных, в плане геолого-тектонических условий, является Лисичанский район, расположенный в северной зоне мелкой складчатости. Поле отработанной и закрытой еще в семидесятые годы шахты «Томашевская-Южная», расположенной в указанном районе, представляет купольную структуру. Из пробуренных в центре купола скважин до настоящего времени выделяется метан.

В тектоническом отношении участок расположен в северной зоне мелкой складчатости на северо-восточном крыле Бахмутской котловины между Северодонецким и Лисичанским надвигами (рис. 1). По дорифейскому фундаменту предполагается система сближенных глубинных разломов [3, 6]. Разломы представляют собой наклоненные в сторону осевой части рифта уступы в фундаменте и имеют значительную протяженность и амплитуды. Согласно сейсми-

1 — разрывные нарушения; 2 — изолинии известняков Рис.1 — Тектоническая схема участка Томашевского

ческим и геологическим данным эти долгоживущие разломы являются составной частью трансрегиональной сдвиговой линии, прослеживающейся до Каспийского моря. Сдвиговая составляющая (правый сдвиг) по отложениям среднего карбона составляет 10 км (до 20 км) [1-3]. В осадочной толще она проявляется в виде ряда разрывных нарушений, а также пространственно и генетически связанных с ними складок. Высокое содержание (0,01-0,467) и тяжелых углеводородов (0,8-0,21) [4], а также активизация современных движений [5], в пределах района исследований, позволяют предположить возможность поступления мантийных газов.

Северодонецкий надвиг прослеживается с юго-востока на северо-запад, плоскость сместителя падает на юго-запад под углом до 70° , стратиграфическая амплитуда его достигает 1600 м. С глубины 600 - 800 м плоскость сместителя надвига выполаживается до 35 - 40° с одновременным уменьшением стратиграфической амплитуды. Мощность зоны дробления $\cong 100$ м.

Расположенный юго-западнее Лисичанский надвиг простирается с юго-востока на северо-запад, плоскость сместителя падает на юго-запад под углом

до 70° (на верхних горизонтах), амплитуда смещения составляет 100 - 115 м. С глубиной угол падения и амплитуда смещения уменьшаются.

В висячем крыле Северодонецкого надвига расположена система ступенчато смещенных купольных структур, которые в совокупности образуют сложное антиклинальное поднятие, вытянутое с северо-запада на юго-восток (Кременские, Томашевские, Матросский и др. купола) почти на 50 км.

По мнению большинства исследователей [6, 7], образование складок происходило в инверсионный период, когда сжимающие усилия были направлены от центральной части бассейна к его окраинам, при этом Северодонецкий надвиг являлся упором для надвигающейся толщи. В процессе надвигания в висячем крыле его образовалась типичная приразломная антиклиналь. Предполагается, что это антиклинальное поднятие оформилось в заальскую или пфальцскую фазы герцинского орогенеза и к началу триаса представляло асимметричную флексурообразную складку (первого порядка) с пологим юго-западным и крутым северо-восточным крылом, амплитудой порядка 300 м [6]. В дальнейшем в австрийскую и ларамийскую фазы - под действием горизонтальных сжимающих усилий, направленных с юга и при участии сдвиговой составляющей в толще карбона сформировалась система купольных структур (второго порядка).

Томашевские Южная и Северная купольные структуры характеризуются примерно одинаковыми условиями залегания и размерами. Свод купола Томашевской-Южной структуры плоский, борта складки на северо-востоке, вдоль Северодонецкого надвига, крутые - от 40 до 70°, на юго-западе пологие — от 5 до 20°.

Породы Томашевских купольных структур представлены отложениями свит нижнего и среднего карбона. На поверхность выходят отложения свит ${\rm C_2}^3$, ${\rm C_2}^4$ и ${\rm C_2}^5$.

Литологический состав свит следующий: песчаники (20 - 35 %), алевролиты (27 - 40 %), аргиллиты (29 - 47 %), известняки (3 - 9 %), угли (0.2 - 3 %). Угольные пласты преимущественно нерабочей мощности, за исключением пласта h_8 , который имеет рабочую мощность 0.7 - 0.9 % и отрабатывался шахтами Томашевскими Южной и Северной до 1975 г. По степени углефикации угли отнесены к газовым. Анализ плана горных работ по отработанному пласту и проводившимся горным выработкам показал наличие на шахтном поле нарушений типа сбросов и взбросов, а анализ керна, пробуренной в подработанном массиве скважины, выявил густую сеть трещин.

Анализ керна скважины 1Д, пробуренной на участке шахты «Томашевская-Южная» на глубину 240 м в почву отработанного угольного пласта h_8 показывает, что около 70-75 % отложений представлено мелко-тонкозернистыми песчаниками с различным содержанием первичных и вторичных карбонатов. Карбонаты активно корродируют кварцевые и полевошпатовые обломки, что способствует выделению вторичного кварца, формированию регенерационных каемок и может существенно влиять на фильтрационные свойства пород.

В исследованном интервале не отмечено ни одного крупно- или среднезернистого песчаника существенной мощности. Интервалы: (сверху вниз по разре-

зу) до 60 м; от 68 м до 80 м; от 105 м до 110 м; и от 125 м до 155 м — характеризуются развитием каолиновых прослоев, мощностью от 5-7 мм до 20-25 мм. Прослои отмечаются, в среднем, через 10-15 см практически без существенных перерывов. Учитывая повышенные пластические свойства достаточно чистых, желтовато-коричневых прослоев каолина, можно предположить их влияние на дегазирующие свойства отложений исследованного участка.

Изучение трещиноватости в керне и шлифах позволило установить следующее. В прослоях аргиллитов и алевролитов развита послойная трещиноватость с зиянием от 5-10 мк до 15-20 мк. Среднее зияние микротрещин составляет 10-15 микрон. В аргиллитах микротрещины повторяют направление слоистости и характеризуются достаточно плавными изгибами незначительных радиусов. В алевролитах и тонкозернистых песчаниках микротрещины имеют более извилистую форму (иногда сутуроподобную), огибают обломочные зерна и, в целом, развиваются по слоистости. Развитие микротрещиноватости в алевролитах и песчаниках приурочено к более тонкозернистым разностям, часто к аргиллитовым, карбонатным или известково-аргиллитовым микропрослоям.

В известняках установлено развитие как послойной микротрещиноватос-ти, так и направленной вкрест слоистости. Угол между микротрещинами и слоистостью меняется от 60° до 90° . В отдельных участках шлифов из карбонатных прослоев отмечено формирование микроблоков 0,40-0,60 мм толщиной и 0,60-1,0 мм длиной, напоминающие кирпичную кладку. Микро-трещины в известняках сравнительно выдержанные, чему способствует крипто-зернистая структура первично-вторичных известняков. Длина трещин меняется от 1-2 мм (что прослеживается под микроскопом) до размеров, выходящих за границы препарата.

Аргиллитовый керн, разбит сеткой трещин, представленной послойными деформациями и направленными к ним под углом примерно 70° - 90° – секущими трещинами.

На глубине 210 – 212 м в керне переслаивающихся аргиллита и алевролита отмечена секущая «первичная» трещина, толщиной около 1 мм, выполненная белым веществом (вероятно карбонатным), а также свежая «вторичная» трещина, направленная под углом 70° к слоистости. Указанная трещина на берегах имеет коричневатый налет. Подобный налет отмечен нами ранее в керне скважины на Чабановском куполе, в тех отложениях, в которых установлен газоконденсат. Судя по глубине, формирование трещин происходило в процессе обрушения пород кровли при посадке угольной лавы, после отработки угольного пласта шахты «Томашевская-Южная».

Исходя из результатов исследований вещественного состава изученной толщи (табл. 1), установлено, что минимальная абсолютная пористость характерна для известняков и известковых алевролитов, максимальная - для песчаников и слабоизвестковистых алевролитов. Интересно, что аргиллиты имеют достаточно высокую абсолютную пористость, особенно безкарбонатные или слабокарбонатные их разности.

Таблица 1 — Объемный, удельный вес и абсолютная пористость пород по керну скважины 1Д шахты «Томашевская-Южная»

$\mathcal{N}_{\underline{0}}$	Название	Глуби-	Объем-	Удель-	Абсолют-	Влаж-	Относительная
проб	породы	на, м	ный вес,	ный вес,	ная пори-	ность,	нарушенность
			г/ с м ³	г/см ³	стость, %		Кн, %
4860	Песчаник м/з	20,2	2,49	2,71	8,1	0,46	5
4861	Песчаник м/з	28,3	2,50	2,75	9,1	0,47	6
4862	Алевролит	33,2	2,41	2,73	11,7	0,40	-
4863	Известняк	52,5	2,61	2,71	3,7	0,20	-
4866	Мергель	52,2	-	-	-	2,35	-
4864	Песчаник м/з	59,1	2,39	2,67	10,5	0,36	13
4865	Песчаник м/з	60,2	2,40	2,79	14,0	0,63	-
4867	Аргиллит	72,1	2,40	2,79	14,0	1,46	-
4868	Известняк	75,2	2,57	2,75	6,5	0,70	-
4876	Алевролит	114,0	2,57	2,72	5,5	0,30	-
4877	Алевролит	115,0	2,28	2,76	17,4	0,80	-
4878	Песчаник м/з	118,0	2,33	2,72	14,3	0,34	11
4869	Известняк	122,8	2,96	3,26	9,2	0,60	-
4870	Алевролит	140,1	2,30	2,76	16,7	0,78	-
4879	Известн. песч	141,0	2,55	2,72	6,3	0,85	-
4880	Известн. песч	148,0	2,56	2,78	7,9	0,70	-
4871	Песчаник м/з	163,2	2,49	2,71	8,1	0,49	8
4881	Алевролит	166,5	2,48	2,62	5,3	0,65	-
4872	Песчаник м/з	170,1	2,52	2,70	6,7	0,41	8
4882	Песчаник м/з	171,0	2,48	2,71	8,5	0,40	9
4873	Алевролит	175,0	2,50	2,70	7,4	0,58	-
4883	Песчаник м/з	175,0	2,24	2,69	16,7	0,66	3
4874	Алевролит	176,2	2,49	2,80	11,07	0,60	-
4884	Алевролит	177,0	2,42	2,78	12,9	1,45	4
4885	Алевролит	177,5	2,39	2,68	10,8	0,70	-
4886	Песчаник м/з	178,0	2,42	2,71	10,7	0,33	-
4887	Алевролит	180,0	2,46	2,73	9,9	0,60	-
4875	Аргиллит	187,1	2,42	2,72	11,03	1,29	-
4888	Песчаник м/з	197,0	2,28	2,70	15,5	0,65	-
4889	Алевролит	198,0	2,27	2,69	15,6	0,40	-
4890	Алевролит	199,0	2,43	2,72	10,7	0,60	-
4891	Алевролит	200,0	2,53	2,70	6,3	1,03	-
4892	Алевролит	205,0	2,48	2,72	8,8	1,00	-
4893	Алевролит	216,0	2,47	2,72	9,2	1,02	-
4894	Песчаник с/з	223,0	2,04	2,68	23,9	0,30	29
4895	Песчаник с/з	229,0	2,12	2,58	17,8	0,20	27
4896	Песчаник м/з	240,0	2,27	2,56	11,3	0,60	17

^{* -} с/3; м/3 — среднезернистый, мелкозернистый.

Максимальной пористостью, обладают слои песчаника, залегающего в почве h_8 , что является следствием релаксационного выдавливания (разгрузки почвы) после отработки угольного пласта.

Анализируя полученный материал, по участку шахты «Томашевская-Южная», можно сделать следующие выводы. Результаты петрографического анализа (развитые структуры коррозии, регенерации, растворения и переотложения вещества) подтверждают то, что рассматриваемая купольная структура сформировалась в условиях повышенной обводненности региона.

В разрезе исследованной площади не установлено достаточно мощных песчаников, тем не менее, эти отложения характеризуются сравнительно высокой пористостью (в среднем, 11,0 %).

В прослоях аргиллитов и алевролитов развита вторичная послойная трещиноватость, сформированная после отработки угольного пласта и посадки кровли лав, с зиянием от 5-10 мк до 15-20 мк. Среднее зияние микротрещин составляет 10-15 микрон.

Развитие текстурной (послойной) микротрещиноватости в алевролитах и песчаниках приурочено к более тонкозернистым разностям, часто к аргиллитовым, карбонатным или известково-аргиллитовым микропрослоям.

Исследованные отложения характеризуются наличием каолиновых прослоев, мощностью от 5-7 мм до 20-25 мм. Прослои отмечаются, в среднем, через 10-15 см практически без существенных перерывов. Развитие каолиновых прослоев (тонштейнов), в сочетании с мощными горизонтами аргиллитов и слабопроницаемых известковых алевролитов, может служить надежным газонепроницаемым экраном для данного купола.

Вместе с этим отмечена микроблочная нарушенность карбонатных пород, то есть достаточно высокая степень их микротрещиноватости. Весовая влажность всех отобранных проб горных пород в среднем составляет 0,64 % (см. табл. 1), что примерно на порядок меньше, чем в аналогичных не подработанных отложениях. На указанном куполовидном участке отработанной ранее шахты метан выделялся на поверхность на протяжении более 40 лет.

Степень заполнения пор песчаников влагой в интервале глубин 20,0 – 240,0 м составляет, в среднем, 8,5 %. Учитывая, что исследуемые песчаники залегают на небольших глубинах, на которых породам присуща высокая влажность, можно предположить, что после отработки угольного пласта, посадки кровли и последующей просадки вышележащих пород, гравитационная вода по многочисленным системам сформировавшихся микротрещин частично ушла в пониженные участки структуры, освободив место для метановой составляющей. Так как газ находится в горном массиве в свободном, сорбированном и водорастворенном состояниях, под действием изменившегося пластового давления из-за ухода воды, он десорбируется и занимает освободившееся пространство в форме свободного газа, который можно добывать и утилизировать.

Результаты трещинно-поровых характеристик, коллекторских и структурноминералогических данных, в сочетании с геолого-геофизическими данными свидетельствуют о перспективности подработанных структур такого типа для добычи и утилизации шахтного метана.

СПИСОК ЛИТЕРАТУРЫ

1. Высочанский И.В., Крот В.В., Чебаненко И.И. и др. Особенности тектоники Днепровско-Донецкого авлакогена (роль сдвигов в структурообразовании) - К.: ИГН НАН Украины (препринт), 1990. – 92 с.

- 2. Смишко Р.М., Щерба З.В. Сравнительная характеристика строения и газоносности разломных зон Предкарпатского прогиба и Северного Донбасса // Геол. и геохим. горюч. ископ. 1990. Вып. 75. С. 37 44.
- 3. Михалев А.К. О горизонтальной составляющей амплитуды Каменского надвига в Донбассе // Геол. журн. 1988. N 1. С. 127 129.
- 4. Гуров И.Ю., Козленко В.Г., Поплавская К.Н. Новые данные о неоднородности фундамента Днепровско-Донецкой впадины (результаты сейсмогравитационного уплотнения) / Пробл. нефтегаз. кристал. пород фундамента ДДВ. К.: Наук. думка, 1991. С. 73 -79.
- 5. Ильченко Т.В. Сейсмическая модель земной коры по профилю ГСЗ Приазовский массив Донбасс-Воронежский массив // Геофиз. ж.–1992. №5. С. 50-59.
- 6. Геология месторождений угля и горючих сланцев СССР. Угольные бассейны и месторождения юга Европейской части СССР / Под ред. И.А. Кузнецова, В.В. Лапушина, М.Л. Левенштейна и др. М.: Гос. научн.техн. изд-во лит. по геол. и охране недр. 1963.– Т. 1. 1209 с.
- 7. Терентьев Е.В. Палеотектонические реконструкции на геологических разрезах как метод анализа истории формирования структур и тектонических движений // Тект. угольн. бас. и месторожд. СССР М.: Недра, 1976. С. 185–205.